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I. INTRODUCTION AND PRELIMINARIES

The concept of 2-metric space is a natural generalization of the metric space. Initially, it has been investigated by
Gdhler [5] and has been developed broadly by Gdhler [6, 7] and more. After this number of fixed point theorems have
been proved for 2-metric spaces by introducing compatible mappings, which are more general than commuting and
weakly commuting mappings. Jungck and Rhoades defined the concepts of d-compatible and weakly compatible
mappings as extensions of the concept of compatible mapping for single-valued mappings on metric spaces. Several
authors used these concepts to prove some common fixed point theorems. Iseki [10, 11] is well-known in this literature
which also include cho et.al., [1,2], Murthy et.al.[15], Naidu and Prasad [16], Pathak et.al. [17]. Vishal Gupta et al
[8] also prove some common fixed point theorems for a class of A-contraction on 2- metric space. Various authors [20,
21, 22] used the concepts of weakly commuting mappings, compatible mappings of type (A) and (P) and weakly
compatible mappings of type(A) to prove fixed point theorems in 2-metric space. Commutability of two mappings was
weakened by Sessa [21] with weakly commuting mappings. Jungck [12] extended the class of non-commuting mappings
by compatible mappings.

The purpose of this paper is to establish some fixed point results for single and pair of mappings which
generalize and extend some existing well-known results in the literature. Now we start with following definitions,
lemmas and theorems.

Definition 1.1: Let X be a non empty set and d be a real function from X X X into R*such that for all

x,y,z € X, we have

1. d(x,y)=0

2.dx,y)=0=x=y

3. d(x,y) = d(y,x)
4. d(x,z) <d(x,y) +d(y,z2)

then, d is called a metric or distance function and the pair (X, d) is called a metric space.
Definition 1.2: A sequence {x,, } said to be a Cauchy sequence in 2-metric space X, if for each a € X,
limp nowd(xy,x,a) = 0
Definition 1.3: A sequence {x, } in 2-metric space X is convergent to an element x € X if for each a € X,
limd(x,,x,a) =0

n-—-oo
Definition 1.4: A complete 2-metric space is one in which every Cauchy sequence in X converges to an element of X.

Definition 1.5: Let A and S be mappings from a metric space (X,d) in to itself, A and S are said to be weakly
compatible if they commute at their coincidence point.
i.e.,Ax = Sx for some x € X, then ASx = SAx.
Definition 1.6: Two self maps f and g of a metric space (X, d) are called compatible if
limy - A£G, G %) = O

whenever {x,, } is a sequence in X, such that
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lim fx, =limgx, =t
n—-oo n—-oo

for some t in X.

Definition 1.7: Maps f and g are said to be commuting if fgx = gfx forallx € X

Definition 1.8: Let f and g be two self maps on a set X, if fx = gxfor some x in X then x is called coincidence point

of fandg.

Throughout this paper X is stand for complete 2-metric space.

Lemma 1.9: Every subsequence of a convergent sequence to a point X is convergent X

Theorem 1.10 (BANACH’S CONTRACTION MAPPING THEOREM): Let (X,d) be a complete metric space and
T : X — X be a map such that

d(Tx,Ty) < ad(x,y) for some 0 <a <1 and all x,y €X then T has a unique fixed point in X.
Moreover, for any x, € X the sequence of Picard iterates {T"x,}, n = 0 converges to the fixed point of T.

II. MAIN RESULT

Now we prove the following results:
Theorem 2.1:- Let (X,d) be 2- metric space. Let T : X — X be continuous mapping satisfying the condition,
d(Tx,Ty,a)
. d(x,Tx,a)d(y,Ty,a) + d(x,Ty,a)d(y, Tx,a)
= d(x,y,a)
d(x,Ty,a)[d(x, Tx,a)d(y, Ty, a)]
dix,y,a) +d(y, Ty,a)d(y,Tx, a)
d(x,Tx,a) d(y,Tx,a) + d(y,Ty,a)d(x, Ty, al
Y d(x,Tx,a) +d(y,Tx,a) + d(y,Ty,a) + d(x, Ty, a)
d(x,Tx,a)d(x,Ty,a) + d(y,Ty,a)d(y, Tx, a)
d(x,Ty,a) + d(y,Tx,a)
+6[d(x,Tx,a) +d(y,Ty,a)] + n[d(y,Tx,a) + d(x,Ty,a)] + ud(x,y, a) (1)
forall x,y € X,x # y and for a,B,y,p,6,n,u € [0,1) such that 2a +2p+ 45 +4n+2u < 2thenT
has a unique fixed point in X.
Proof. Define Tx,, = x,., then

+B

d(xp,Txpn,a)d(Xp-1,TXn-1,0)+d(Xn,Txp_1,a)d(Xp-1,TXy,a)

d(xn, xn-1,0)

d(Xpi1, Xn, @) = d(Tx,, Txp_q,a) < a

d(xy, Txp_q, a)[d(x,, Tx,, a)d(x,_1, Txp_1, @)]
+B d(x,, xy_1,a) + d(xy_q, Txpy_q, @) + d(x,y_q, Tx,, @)

d(xp, Txp, a)d (X1, Txp, @) + d(xp_q, TXpo1, a)d (X, TXp_q1, @)
+Y d(x,, Tx,, a) + d(x,_4, Tx,, @) + d(x,_1, Tx,,_1, @) + d(x,,, Tx,_1,@)

d(x,, Tx,, a)d(x,, Tx,_1,a) + d(x,_1, Txp_q, a)d (x,_q, Tx,, @)
+P d(x,, Tx,_1,a) + d(x,_1, Tx,,a)

+6[d (e, T, @) + d (g, TXpoq, )] + n[d(xp_q1, Txp, @) + d(x,, TXp_q, @) + ud(xy, Xp_q, @)
<(a+ g +8+n)d(xy, x,0,0 +(p+ 6 +n+ w)d(x, x,-1,a)

(p+6+n+uw)
1-(a+L+6+m)

s d(x,, x,41,a@) € d(x,, x,_1,a)

Hence, d(xp4q,%n, @) <€ Ad(Xp, Xp_q1, @)

Wherel=(p+6:,r—n+u), 0<A<1.
1—(a+7+6+17)

Continuing the same process we get

d(xy i1, Xy, @) < Ad(x4, X4, @)
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Now for any m,n (m > n)using triangle inequality we have

d(xp, X, @) < d(xp, X1, @) + d(piq, Xnyo @) + d (s Xz, @) + oo +d (X1, X, @)

< A"d(xy,x0, @) + " d(xy, x0, @) + A2d(xy, %0, @) + -+ oo+ A" (2, X, @)
S AT AT 4 L A N xy, x, ) = d(xl,xo, a)

For anye > 0 choose a positive number N = 0 such that

An

md(xl,xo, a)<e

Then foranym >n = N,

n N

md(xl,xo,a) < —Ad(xl,xo,a) <e

d(xy, X, @) < T

Hence {x,} is a Cauchy sequence in X . Since X is complete so there exists a pointu € X such
that x,, —u as n —oo. Further continuity of T in X implies therefore u is the fixed point of T.
Uniqueness: If possible, let u and vare two fixed point of T so that by definition we haveTu =u
& Tv = v. 50
d(w,v,a) = d(Tu,Tv,a)
d(u Tv,a)d(v,Tv,a) + d(u, Tv,a)d (v, Tu, a)
- du,v,a)
d(u,Tv,a)[d(w,Tu,a)+d (v,Tv,a)]
d(u,v,a)+d,Tv,a)+d(v,Tu,a)
N d(u, Tu,a)d(v,Tu,a) + d(v, Tv,a)d(u, Tv, a)
yd(u, Tu,a) + d(v,Tu,a) +d(v,Tv,a) + d(u, Tv,a)
+ d(w,Tu,a)d(u,Tv,a)+d (v,Tv,a)d(v,Tu,a)
p d(u,Tv,a)+d(v,Tu,a)
+6[d(u, Tu,a) + d(v,Tv,a)] + nld(v, Tu,a) + d(u, Tv, a)]
+ud(u,v,a)

+B

which implies
d(u,v,a) < (a+2n+udu,v,a)
which is a contradiction,
since 2a+2p + 48 +4n+2u < 2.
Hence d(u,v,a) = 0=>u = v.
This completes the proof of the theorem.
Remark: In theorem (2.1) If
1. a= =y =p=356=n= 0 then the theorem is reduced to Banach [24]

2. a= B=y=p=n=u= 0 thenthetheorem is reduced to Kannan [19]

3. a= B=y=p=n= 0 then the theorem is reduced to Chatterjee [23]

4 a= B = =8 = 0 then the theorem is reduced to Fisher [1]

5. a= B =y =p = 0 then the theorem is reduced to Riech [25]

6. a=B=y=6=n=u= 0 then theorem is reduced to M. S. Khan [14]
7. p = 0 then the theorem is reduced to R. Bhardwaj et.al [18]

Now we establish a result for which T is not necessarily continuous in X but T is continuous for

some positive integer v then T has a unique fixed point in X .

Theorem 2.2: Let T be a self mapping defined on 2- metric space (X,d) such that the condition (1) holds. If for some
positive integer r, T" is continuous then T has a unique fixed point in X.
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Proof. Let us define a sequence {x,,} as in theorem (2.1), then clearly it converges to some point u of X.
So we can define a subsequence {x,, } of {xy} which also converges to the same point u of X . Now

T'u =T7 gim Xn, ) = Iéin.}o(Trxnk) = I{in.}o(xnkﬂ) =u

Hence u is a fixed point of T" .
Now we show that Tu = u.

pu =u but

Let p be the smallest positive integer such that T
9 +u forq=123....p— 1
Ifp—1> 0 then

Where d(Tu,u,a) = d(Tu,TPu,a) = d(Tu, T(T?"1u), a)

d(uTu,a)d(TP~u,TPu,a)+d(w,TPu,a)d(TP~1u,TPu,a)
a
d(u,TP~1u,a)

N d(u, TPu, a)[d(Tu, TPy, a) + d(T? " u, TPu, a)]
p d(u, TP~1u, a)

d(u, Tu,a)d(T?~*u, Tu,a) + d(TP~*u, TPu, a)d(Tu, TPu,a)
v d,Tu,a) + d(TP~1u, Tu,a) + d(T?~1u, TPu,a) + d(Tu, TPu, a)

N d(u, Tu,a)d(u, TPu, a) + d(T?"*u, TPu, a)d(T? ‘u, Tu, a)
P dwu, TPu,a) + d(TP~1u, Tu, a)

+6[d(u, Tu,a) + d(TP u, TPu, a)] + n[d(T?1u,Tu, a) + d(u, TPu, a)] + ud(u, T?*u, a)

Such that
@+p+n+u) p-1
d(Tu,u,a) < 1—(a+§+s+n)d(u'T u,a)
dlu,Tu,a) <Ad(w, TPy, a) < --.< 22d(u, Tu, a)
where

1= (6+p+n+p)

= ¥ <1
1—(a+7+6+n)

a contradiction, hence d(u,Tu,a) = 0=>u =Tu
The uniqueness can be followed as in theorem (2.1).
This completes the proof of the theorem.
Theorem 2.3: Let S and T be mappings of 2- metric space (X, d) into itself. Suppose that there exists a non
negative real number a and B such that a + 28 <1 and
d(x,Tx,a)d(x,Sy,a) + d(y,Sy,a)d(y, Tx,a)
d(x,Sy,a) + d(y,Tx,a)
+B max{d(x,Tx,a) + d(y,Sy,a),d(y,Sy,a) + d(x,y,a),d(x,Tx,a) + d(x,y,a)}
forall x,y € X then S and T have a unique common fixed point.
Proof. Let x, € X . Define the sequence {x,} by

d(Tx,Sy,a) <«

Xone1 = Son), Xonsz = T(Xpne1),n = 0,1,2 ...... then we have
d(x,xp,a) =d(Sxy, Tx,a) =d(Tx, Sx,, a)
- d(x; ,Txq,a)d(x;,Sx, a) + d(x, Sxg,a)d (xg, Txq,a)
=« d(x, ,Sxy,a)d(xg,Tx1,a)
+pmax{d(x, ,Tx,a) + d(xy, Sxq,a),d(xq, Sxo, @)
d(x;,x0,a),d(x; ,Txg,a) +d(x;, %9, a)}
d(xy ,x,,a)d(xy ,xq,a) + d(xg, xp,a )d(xg, x5, )

d(xy,x1,a) + d(xg, %2, @)
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+pmax{d(x; , x5, a) + d(xg,x1,a),d(xg, xq,a) + d(x; ,x9,a),d(xy , x5, @)
+ d(xy,x,a)}

= ad(xg,x1,a) + B{d(xy ,x3,a) + d(x,x1,2)}
(1—-B)d(x1,xz,a) < (a + B)d(xg,x1,a)

a+
d(x1,%x5,a) < md(xo,xl,a)

Putl=%where0£l<1

Then
d(x1 ,%5,a) < Ad(xg,x1,0)

Similarly we can show,
d(x,,x3,a) < Ad(xy,x,,a)
In general we have
d(xXp, Xpe1,a) < A (xg, x4, Q)
Hence {x,} ia Cauchy sequence. Since X is a 2- metric space, so the sequence {xy}
converges to some point x in X. For
the point x,

d(x,Tx,a) < d(x,x,41,a) + d(Txy,, Tx, a)
d(x,, Txy,a)d(x,, Tx,a) + d(x, Tx,a)d(x, Tx,,a)

d(x,, Tx,a) + d(x,Tx,,a)
+p max{d(x,, Tx,, a)+d(xTxa), d(x,Tx) +d(x,, x), d(x,, Tx,,a)+d(x,, xa)}
d(xy, Xpy1, @)d(x,, Tx, a) + d(x, Tx, a)d (X, Xp4q, @)
dQepn, Tx,a) + d(x, %1, Q)
+B max{d(x,, x,+1,a) + d(x,Tx,a),d(x, Tx,a) + d(x,, x,a), d(x,, Xpi1,a) + d(x,,x,a)}

=d(x, xp11,0) + @

=d(x,xp41,0) +

Taking limit as n — eo we have,
d(x,Tx,a) < Bd(x,Tx,a) a contradiction.
d(x,Tx,a) = 0=>x =Tx.
Hence x is the fixed point of T . Similarly following the same process we can show that x is the fixed point of S

Hence x is the common fixed point of T and S.
Uniqueness: To show x is a unique common fixed point of the mappings T and S if possible let y be a fixed point

of S.
d(x, y,a) =d(Tx, Sy,a)
d(x,Tx,a)d(x,Sy,a) + d(y,Sy,a)d(y, Tx, a)
=@ d(x,Sy,a) +d(y,Tx,a)

+ max{d(x,Tx,a) +d(y, Sy,a),d(y, Sy,a) +d(x, y,a),d(x,Tx,a) +d(x, y,a)}
d(x,x,a)d(x,y,a) + d(y,y,a)d(y,x, a)

d(x,y,a) +d(y,x,a)

+B8 max{d(x,x,a) +d(y,y,a),d(y,y,a) + d(x,y,a),d(x,x,a) + d(x,y,a)}

d(x,y,a) < pd(x,y,a)

which is a contradiction, since a+2f <1, Hence d(x,y,a)=0=x=y. This completes the proof of the
theorem.
Remark: If B = 0 we get theorem (2.1) of M.S. Khan [14]
If « = 0 we get theorem 2.2 of R. Shrivastva et. al. [20].
If S =T then we get the following
Corrollary 2.4:

d(Tx,Ty,a)
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+pmax {d(x,Tx,a) + d(y, Ty,a),d(y, Ty, a)
+d(x,y,a),d(x,Tx,a)
+d(x,y,a)

Remark: If & = 0 then we get A -Contraction introduced by M. Akram et.al [13].

If B = 0 we get theorem (1.10) of M. S. Khan [14].

Again the result of theorem (2.1) can be further generalized. In this case, the mapping T is

neither continuous nor satisfies the condition (1) but T™ for some positive integer m satisfies the same
rational condition and contiuous, T still consumes a unique fixed point in X.

Theorem 2.5: Let T be continuous self map defined in 2- metric space (X, d) such that for some positive integer

m, satisfies the condition
dlx, T™x,a)d(y, T™y,a) + d(x,T™y,a)d(y, T™x, a)

d(x,y,a)

d(T™x,T"y,a) < a

d(e, T™y,a)[d(x, T™x, a)d(y, T™y, a)]

Y 4y, + d0y, Ty, @) + 40, T, a)
d(x, T™y,a)d(y, T™x,a) +d(y, T™y, a)d(x,T™y, a)

Y d(x,Tmx,a) + d(y,T™x,a) + d(y, Ty, a) + d(x, T™y, a)
d(, T™x,a)d(x, T™y,a) + d(y, Ty, a)d(y, T"x, a)
d(x,Tmy,a) + d(y, T™x, a)
+68[d(x, T™x,a) + d(y, T™y,a)] + nld(y, T™x,a) + d(x,T™y,a)] + ud(x,y, a)
forall x,y € X,x #y andfora,B,y,p,6,n,u € [0,1) such that 2a +2p + 45 +4n +2u < 2,

if T™ is continuous then T has a fixed point in X.
Proof. By theorem (2.2), it is obvious that T™ has a unique fixed point u in X
i.e T™ (u) = u Also
Tw) =T(T™w) = T™(Tw)
From both relations we conclude that T(w) =u. i.e T has a fixed point u in X. This completes the
proof of theorem.
Theorem 2.6: Let {T,} be a sequence of mappings of 2- metric space (X, d) into itself. Let x, be a fixed point
of {T,} (n = 1,2,...) and suppose {T,} converges uniformlyto Ty . If T, satisfies the condition
d(x, Tox, a)d(x, Tyy, @) + d(y, Ty, a)d(y, Tyx, @)
d(Tyx, Tyy,a) < a
d(x, Tyy,a) + d(y, Tox, a)
+yd(x,y,a)

d(x,y,a) + d(y, Tyy,a) + d(y, Tyx,a)

forall x,y € X,x #y andfor a,f,y € [0,1) such that « + f +y < 1 then {x,} converges to

the fixed point x, of T, .
Proof. From Theorem (2.1) and by given remarks conclude that T has a unique fixed point satisfying the
given rational expression. Let € > 0 be given, then there exists a natural number N such that

d(T,x, Tox,a) < m
Forallx € X andn > N.
d(x,,x,a) = d(T,x,, Tyxo, @) < d(T,x,, Tyx,, a) + d(Tyx,, Tyx,, @)
d(xy, Toxy, a)d(x,, Toxo, @) + d(xg, Toxg, a)d(xg, Tox,, a)
d(x,, Toxo, a) + d(xg, Tyx,, @)
d(x,, Toxo, a)[d(x,, Tox,, a) + d(xg, Toxo, @)]
d(xp, xg,a) + d(xg, Toxo, a) + d(xg, Tox,, a)
d(x,, Toxy, a)d(x,, xo, @) + d(xq, X9, a)d(xg, Tox,, @)
d(x,, x9,a) + d(xy, Tyx,, @)

d(xp, %9, a)[d(xy, To Xy, @) + d(xg, X0, a)]
d(x,, xg, a) + d(xg, x9, @) + d(xg, Tgx,, @)

< d(Tyx,, Toxn, a) +

+ yd (x,, x4, @)

=d(Tyx,, Toxn, a) +

+ yd (xnleI a)

+B

Such that

d(x,,x,a) < d(Txp, Toxp,a) < & forn> N.

1
1-(a+p+v)
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This shows that {x,} converges to x; .

This completes the proof of the theorem.
Remark: In the above theorem, if § =y = 0 then we get theorem (2.2) of M. S. Khan [14].
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